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An alternative rigorous derivation is given of the operator equation on which the effective-
mass theory for electrons in periodic potentials and applied fields is based. The relationship
of this work to previous derivations is briefly discussed.

A simple derivation of the single-band effective
Hamiltonian for electrons in a periodic potential,
with applied electric and magnetic fields, has been
given recently by Zak, ! utilizing a representation
based on eigenfunctions of a momentum space trans-
lation operator. In this “kq representation, ” J is
a spatial variable which is conjugate to the recip-
rocal-lattice momentum vectors K,, and which
ranges over a unit cell.

In view of the current interest in this approach,
it may be worth noting that an equally simple deri-
vation of the single-band effective Hamiltonian may
be obtained by using a representation based on
relabeling the exponential functions ik F which,
as is already well known, form a complete set.

For example, the operator equation from which the
effective Hamiltonian is obtained®* may be derived
in a single step.

We observe that if for some particular lattice,

k ranges over the first Brillouin zone in wave-vec-
tor space, and Km ranges over all possible vectors
of the reciprocal lattice, then the values of k + ﬁm
cover the entirety of wave-vector space and the

set of functions V"1 %¢ i@ +Rm ¥ jg complete. Here,
V is the volume within which the functions are
normalized. These functions, in the language of
group theory, may be considered to be eigenfunc-
tions of the group of commutmg translation opera-
tors ei®n +® 3/ " ywhere R, is a lattice vector and

2

€ an arbitrary translation lying within a primitive
unit cell.
We may then expand an arbitrary wave function

¥ (¥) in terms of this set;

i(f)=((2n)3) Z/ d*kexpli (k+K,)-F]D; m’(
1)

where Dg g is the wave function in the “Kﬁ rep-

resentation. ” It is evident that Dy ,&,, 18 a function

of the sum k+K,,, , so that, for example
D_1/2%;%ms Ri=D1/2% R - (2)

It is easﬂy estabhshed that the momentum opera-
tor p in the kK representation takes the form
bi,x, = [E&+K,) . (3

The corresponding form of the position operator
T is obtained as follows:

T (F)= <(21;)3>1/z

X%’ /d3k<%viei(ﬁ+km)’?‘>DE’km
m
4)

Upon integrating by parts, the operator iV; is ap-
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plied to Dg, %, - The boundary terms are a sum of
surface integrals over the surface of the first
Brillouin zone;

% f a’k Vi

le i(Re By ot Di,km]

=2 L. [aBet®Ewip; o

R L(/2)%;1

where d§i is an outward normal over that part of
the surface of the first Brillouin zone bounded by
the plane which perpendicularly bisects the recip-
rocal-lattice vector f{’i . It is clear that, because
of the property (2), the boundary term for a given
K and zK w111 cancel with that corresponding to

+Ki and - zKi . Hence all boundary contribu-
tions vanish, and

Y’g,f{m= iVg . (5)
Since the potential V(F) has the periodicity of the
lattice, it can be expanded in a Fourier series

V(F) =§ V(EK,)eEm- T (6)

Then it may be shown that
VERD = (0 ) z f d'%

n

("

For constant applied magnetic and electric fields,
the scalar and vector potentials for one choice of
gauge take the following form:

q’ﬁyﬁm:—iﬁ .VE! (8)

Ag g =LiHxvg. (9)
» Bm

The single-particle Schrodinger equation in the
kK, representation is then

2 & H%, %, D5, %, EDi,%,, » (10)

where the Hamiltonian operator Hx,x, is given by
- 2
Hy %, (k)~— (ﬁ(k+K ) - 2 € fix v;> Ok, X,

+V (Km - K,,) —ieE - VEGR,,,?" . (11)

The operator equation (10) is equivalent to that ob-
tained by Praddaude, * Blount, ® and Zak. '

In order to demonstrate the utility of the present
simple approach and to show its equivalence to the
work of Zak, let us show how an effective one-band
Hamiltonian can be obtained in this representation.
We first write the Schrodinger equation in the kK
representation for zero fields. We use the notation
dg,-ﬁm for the wave function, where the superscript
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n is a band index:

-

P =
o &K, ) di v, +ZVK,,, K,)d} z,=E}dix,
(12)

In particular for k=0,

;ZZ

o K5dg %, +§ VK, - K, dj x,=Ejdi %, - (13)

1

Since different values of k are not coupled by Eq.
(12), the energy eigenfunctions can be chosen to be
Bloch functions, so that there is no sum over Kk in
Eq. (1). Then for each value of k, the wave func-
tions d" &y are solutions of a system of linear equa-
tions w1th constant coefficients, and obey the ortho-
gonality and completeness relations

Zx,d% 48 %, =Onm (14)

)
%
2. d5%, P&, = ORaE, - (15)

Now consider a general solution Di %, with fields
on. We can construct an expansion: of Di x,, in
terms of dﬁ’;{ using the completeness relation for
an arbitrary k’;

D &p= (220 EKZDE’kldET'%I)dgl'Rm . (16)
In particular if kK= 0, we introduce the coefficients
A, (k) by means of
Dy, =2, A&z (17)
and if K’ =§, the corresponding coefficients B,,(ﬁ)
are given by
D. Rm=Zan(k) d%ﬁm . (18)

Then from Eq. (16), the coefficients A,,(.l;) and
B,(k) are related by

A,@®=2,8,®8,6 , (19)
where

Sni (k) = Zx, apg &, 4 (20)

k R,
The matrix S is unitary, for it is easily verified
from Egs. (14) and (15) that
S'S)w= 2 dhg df
iR, R,
Then using the expansion of Dkx in terms of df, R,
together with Eq. (19),

Dy iam:"Z] S, (B, @)if 2., (22)

0 Rl d" i = 6nl . (21)

and we have

. > > N\ n _ el n
mk;Hngl @2 S, 0k)B ,(k)do,g,_E%j Sa;(K)dg, %, 8)
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After multiplying on the left by df , and summing
over all K,,, the above equation reduces to

2.; (StHS) iij(E):E;Bl(E) )

where the matrix H,;, appearing in Eq. (24) is given
by

(24)

2, Hz %, 90,%, (25)

- i*
in % Ekzd s
the rows and columns of H;, being labeled by band
indices.

It should be emphasized that the matrix S,; defined
in Eq. (20) in terms of a sum over reciprocal-lattice
vectors is numerically identical to the matrix S,
obtained by Zak! using the kg representation. S,;
in no way depends on the particular choice of 2q
or kﬁm representations.

The single-band part of the Hamiltonian H;, may
be separated out with the help of the definitions:

Z d 2 VK, -K)do,gl (26)

ka,Z dé?“z,,, nK iz (27
m

Then

1\~ 4 -
Hyp=04 [(Zn—)<ﬁk — 5 HX v,) - ieE - vf}
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n’Ke = =
+ Z do, m( 2 O,gmgl+V(Km—K,))d{,’,g,
ml

+T>f,,-(ﬁﬁ-%ec-ﬁxvg) m (28)

and using Eqgs. (13) and (14)

1 2
H,,,:o,,,[z (ﬁk ZCHXV-) —ieE-VE+E5]

> e
Pi"'(ﬁk-“z‘c'HXVi)/m.

A single-band effective Hamiltonian may be ob-
tained by transforming away the interband terms
in Eq. (29). In the absence of external fields, this
can be accomplished by means of the matrix S de-
fined in Eq. (20), for in this case it is easily veri-
fied that

(STHS) ;;=EL5; .

With nonzerp fields, an appropriately symmetrized
matrix [S,,,(k)] may be used, as discussed by Roth®
and Zak.! Acceleration theorems may also be
proved usmg the symmetrized S; the calculations
in the IT:K representation are, however, identical
to those in the kg representation, inasmuch as the
matrix S does not depend on which representation
is chosen.
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Application of Gutzwiller’s Variational Method to the Metal-Insulator Transition
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It is shown that the approximate variational calculation of Gutzwiller predicts a metal-insula-
tor transition as the intra-atomic Coulomb interaction is increased for the case of one electron
per atom. The susceptibility and effective mass are calculated in the metallic phase and are
found to be enhanced by a common factor which diverges at the critical value of the interaction.

Several years ago, Gutzwiller! performed an ap-
proximate variational calculation of the ground-
state wave function for a model Hamiltonian with a
single tight-binding band and with only intra-atomic
Coulomb interactions between the electrons. This
model Hamiltonian, introduced earlier by Hubbard, 2
Gutzwiller, 3 and Kanamori, * is generally known as

the Hubbard model and has been studied by many

authors. Using Gutzwiller’s' notation, as we shall

in this paper, the model Hamiltonian has the form
H=Y i€ (ahag + atap) + C L adiabiagaz , (1)

where af and al are the creation operators for elec-



